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Treetable:	a	case-study	in	q
Stevan	Apter

This	article	is	the	�irst	in	an	occasional	column,	No	Stinking	Loops.	Stevan	Apter	 is	one	of	the
programmers	Jeffry	Borror	referred	to	as	“the	q	gods”	in	his	textbook	q	for	Mortals.	The	world
of	q	programming	has	so	 far	been	 largely	hidden	behind	corporate	non-disclosure	contracts.
Vector	is	glad	to	see	it	opening	and	proud	to	be	publishing	this.	Ed.

0.	Introduction
A	treetable	is	a	table	with	four	additional	properties.

Firstly,	the	records	of	the	table	are	related	hierarchically.	Thus,	a	record	may	have	one	or	more	child-
records,	which	 may	 in	 turn	 have	 children.	 If	 a	 record	 has	 a	 parent,	 it	 has	 exactly	 one.	 A	 record
without	 a	 parent	 is	 called	 a	 root	 record.	 A	 record	without	 any	 children	 is	 called	 a	 leaf	 record.	 A
record	with	children	is	called	a	node	record.

Secondly,	it	is	possible	to	drill	down	into	a	treetable.	If	a	record	is	a	parent,	then	some	of	its	columns
may	be	rollups	of	its	child-records.	By	drilling	down	into	a	parent-record,	it	is	possible	to	inspect	the
elements	which	 are	 aggregated	 in	 the	 parent.	 All	 rollups	 are	 performed	 on	 the	 leaves	 of	 the	 tree
rather	 than	 on	 the	 immediate	 children.	 This	 means	 that	 tree-construction	 can	 be	 ‘lazy’:	 not	 all
intermediate	rollups	from	parent	to	leaves	need	exist.

Thirdly,	treetables	have	state.	If	the	user	drills	down	into	the	tree	along	a	particular	path,	then	closes
a	node	along	that	path,	the	records	on	that	path	become	invisible.	If	the	user	re-opens	that	parent,
then	the	nodes	along	that	path	will	become	visible	if	they	were	visible	before	the	parent	was	closed.
In	other	words,	closing	an	open	parent	does	not	destroy	the	visibility	state	of	its	children.

Fourthly,	 a	 treetable	 is	 naturally	 sorted	 in	 a	 way	 that	 is	 an	 extension	 of	 ordinary	 table	 sort.
Intuitively,	 the	 sort	 of	 a	 treetable	 is	 a	 structure-preserving	 sort	 of	 the	 ‘blocks’	 out	 of	 which	 it	 is
composed.	 The	 sort	 is	 structure-preserving	 because	 the	 parent-child	 relation	 between	 records	 is
preserved	even	though	record-order	is	not.	I’ve	included	an	explanation	of	how	such	a	multi-column
sort	works.

The	treetable	is	a	natural	candidate	for	a	control	in	a	non-procedural	data-driven	GUI.	K	and	q	have	a
long	tradition	of	such	GUIs,	stretching	back	to	A+	and	the	native	K3	GUI.	The	examples	in	this	paper
are	 abstracted	 from	 an	 implementation	 of	 a	 GUI	 recently	 developed	 for	 q.	 But	 the	 case-study	 is
meant	to	stand	alone,	as	an	exercise	in	pure	data	design.	In	a	future	instalment,	I	hope	to	show	how
such	designs	are	smoothly	integrated	into	a	data-driven	GUI.

1.	Lists,	dictionaries,	tables,	keytables
This	section	contains	the	necessary	background	on	q’s	collection	data-types.

A	list	is	a	collection	indexed	by	position:

q)l:10 20 30 
 
q)l 2 0 
30 10 
 
q)l?30 10 
2 0 

A	dictionary	is	a	collection	indexed	by	a	q	object:



q)d:`a`b`c!10 20 30 
 
q)d`c`a 
30 10 
 
q)d?30 20 
`c`b 
 
q)key d 
`a`b`c 
 
q)value d 
10 20 30 

The	q	object	is	usually	a	symbol	(a	name)	but	need	not	be.	For	example:

q)e:(10 20;30 40 50;70 80)!`a`b`c 
q)e(30 40 50;10 20) 
`b`a 

A	dictionary	is	a	map	from	a	list	of	elements	(the	key)	to	a	list	of	elements	(the	value).	The	key	and
the	value	must	have	 the	same	count.	Moreover,	 the	key	 should	not	 contain	duplicates.	Although	 q
does	not	 enforce	key-uniqueness,	 dictionaries	 containing	 duplicate	 keys	may	 not	 behave	 as	 you’d
expect.

Atomic	functions	penetrate	both	lists	and	dictionaries:

q)l+1 
11 21 31 
 
q)d+1 
a| 11 
b| 21 
c| 31 

A	table	is	a	list	of	dictionaries,	or	records,	all	of	which	have	the	same	key.	For	example:

q)t:(d;d+1;d+2;d+3) 
q)t 
a  b  c  
-------- 
10 20 30 
11 21 31 
12 22 32 
13 23 33 

A	list	of	key-dissimilar	dictionaries	is	not	a	table:

q)(`a`b!10 20;`b`c`d!30 40 50) 
`a`b!10 20 
`b`c`d!30 40 50 

Since	tables	are	lists,	we	can	index	them	positionally:

q)t 1 
a| 11 
b| 21 
c| 31 

The	transpose	of	a	table	is	a	dictionary	whose	values	are	lists:

q)flip t 
a| 10 11 12 13 
b| 20 21 22 23 
c| 30 31 32 33 

The	�lip	of	a	dictionary	of	equal-length	lists	is	a	table:

q)t~flip flip t 
1b 

q	has	a	compact	notation	for	constructing	tables:

q)u:([]a:10 11 12 13;b:20 21 22 23;c:30 31 32 33) 
q)t~u 
1b 

A	table	can	therefore	be	constructed	in	three	ways:



as	a	list	of	dictionaries
as	the	�lip	of	a	dictionary	of	vectors
using	table-notation

A	keytable	is	a	dictionary	in	which	the	key	and	the	value	are	both	tables.	For	example:

q)k:([]f:`a`a`b;g:1 2 1) 
q)v:([]a:10 20 30;b:40 50 60;c:70 80 90) 
q)a:k!v 
q)a 
f g| a  b  c  
---| -------- 
a 1| 10 40 70 
a 2| 20 50 80 
b 1| 30 60 90 

Since	keytables	are	dictionaries,	they	are	indexed	by	key:

q)a(`a;1) 
a| 10 
b| 40 
c| 70 
 
q)a((`a;1);(`a;2)) 
a  b  c  
-------- 
10 40 70 
20 50 80 

Since	keytables	are	dictionaries,	they	can	be	split	into	key	and	value:

q)key a 
f g 
--- 
a 1 
a 2 
b 1 

q)value a 
a  b  c  
-------- 
10 40 70 
20 50 80 
30 60 90 

A	keytable	can	also	be	de�ined	using	q	table-notation:

q)a~([f:`a`a`b;g:1 2 1]a:10 20 30;b:40 50 60;c:70 80 90) 
1b 

The	data	universe	of	q	can	be	summarised	as	follows:	There	are	atoms	and	lists.	Dictionaries	map
lists	to	lists.	Tables	are	lists	of	dictionaries	and	keytables	are	dictionaries	which	map	tables	to	tables.

2.	Trees
We	can	represent	a	tree	as	a	list	of	paths.	For	each	element	of	the	tree	there	is	a	corresponding	path
to	that	element:

   
tree  path 
----  ---- 
A  A 
 B  A B 
  C  A B C 
  D  A B D 
 E  A E 
  F  A E F 
   G  A E F G 
   H  A E F H 
   I  A E F I 

From	the	path	of	an	element	e	we	can	easily	compute	the	parent:	the	parent	of	 e 	is	 enlist e 	if	the
path	is	a	singleton,	else	the	parent	is	the	 drop 	of	the	last	element	of	the	path.



While	the	path-list	representation	is	intuitive,	it	can	be	clumsy	to	work	with.	For	example,	to	�ind	the
children	 of	 A 	 we	 need	 to	 search	 the	 path-list	 for	 all	 2-element	 lists	which	 have	 A 	 as	 their	 �irst
element.	To	�ind	the	children	of	 A B 	we	need	to	 �ind	all	3-element	 lists	which	have	 A B 	as	 their
�irst	two	elements.

We	can	represent	the	parent-child	relation	explicitly,	as	a	table	 PC :

parent child 
------ ----- 
A A 
A B 
B C 
B D 
A E 
E F 
F G 
F H 
F  I 

Then:

q)select child from PC where parent=`A 
child 
----- 
B 
E 
 
q)select parent from PC where child=`F 
parent 
------ 
E 

We	can	represent	the	relation	as	a	parent-vector:

p:0 0 1 1 0 4 5 5 5 

That	is:

i tree  p 
- ----  - 
0 A  0 
1  B  0 
2   C  1 
3   D  1 
4  E  0 
5   F  4 
6    G  5 
7    H         5 
8    I  5 

p[i] 	is	the	index	of	the	parent	of	the	 i th	element	of	the	tree.

To	�ind	the	children	of	any	element	 e 	in	the	tree,	search	 p 	for	occurrences	of	 e ’s	index:

q)where p=5 
6 7 8 

To	�ind	the	root	of	any	element	 e ,	repeatedly	index	 p ,	starting	with	 e :

q)p 6 
5 
q)p 5 
4 
q)p 4 
0 
q)p 0 
0 

To	�ind	the	root	of	 e 	in	one	step,	reduce	 p 	over	 e :

q)p over 6 
0 

p 	is	applied	repeatedly	to	the	previous	result	until	the	result	is	the	same	twice	in	a	row.	This	is	why
it	is	convenient	to	treat	the	root	as	self-parenting.

To	�ind	the	path	from	 e 	to	the	root	in	one	step,	scan	 p 	over	 e :



q)p scan 6 
6 5 4 0 

To	�ind	the	paths	of	all	elements	of	the	tree,	scan	 p 	over	each	of	0	…	 count[p]-1 :

q)i:(p scan)each til count p 
q)i 
,0 
1 0 
2 1 0 
3 1 0 
4 0 
5 4 0 
6 5 4 0 
7 5 4 0 
8 5 4 0 

To	�ind	the	leaf-elements	of	the	tree,	discard	every	element	which	is	a	parent:

q)l:til[count p]except p 
q)l 
2 3 6 7 8 

We	can	use	 p 	 to	aggregate	data	associated	with	 the	 tree.	For	example,	 suppose	 that	 the	 �ive	 leaf-
elements	have	the	following	data:

q)d:count[p]#0 
q)d[l]:l*10 
q)d 
0 0 20 30 0 0 60 70 80  

Now	to	sum	 d 	to	the	root,	amend	a	zero-vector	with	 + 	at	 i ,	the	effect	of	which	is	to	accumulate
sums	on	all	paths:

q)@[count[d]#0;i;+;d] 
260 50 20 30 210 210 60 70 80 

Think	of	it	this	way:	where	 r 	is	the	result,	 r k 	 is	 sum d i k .	In	other	words,	the	result	at	each
node	of	the	tree	is	the	sum	of	that	node’s	descendants.

From	the	parent-vector	representation	and	a	list	of	elements,	we	can	compute	the	path-list:

q)e:`A`B`C`D`E`F`G`H`I 
q)n:reverse each e i 
q)n 
,`A 
`A`B 
`A`B`C 
`A`B`D 
`A`E 
`A`E`F 
`A`E`F`G 
`A`E`F`H 
`A`E`F`I  

And	from	the	path-list	representation	we	can	compute	the	parent-vector:	drop	 the	 last	element	of
each	path	whose	count	is	greater	than	1	and	�ind	each	truncated	path	in	the	path-list:

  
q)n?neg[1<count each n]_'n 
0 0 1 1 0 4 5 5 5 

From	 p 	and	 e 	it	is	also	easy	to	derive	the	parent-child	table:

q)PC:([]parent:e p;child:e) 
q)PC 
parent child 
------------ 
A      A     
A      B     
B      C     
B      D     
A      E     
E      F     
F      G     
F      H     
F      I   

And	vice-versa:



q)e?PC.parent 
0 0 1 1 0 4 5 5 5    

3.	Treetables
One	way	to	think	about	the	treetable	is	that	it	is	a	keytable	whose	records	are	related	by	the	parent-
child	relation.

A	record	is	either	a	leaf	or	a	parent.	A	parent	record	is	the	rollup	of	its	children.

A	treetable	has	a	single	grand-total	record,	the	root	of	the	tree.

The	parent-child	relation	is	constructed	from	an	underlying	table	 T .	The	records	of	 T 	are	precisely
the	 leaf-records	 of	 the	 treetable.	 Nothing	more	 is	 required	 of	 T 	 except	 that	 it	 be	 a	 table,	 but	 in
practice	all	suitable	candidates	for	 T 	will	conform	to	the	following	condition:	 T 	will	contain	one	or
more	 columns	 which	 are	 suitable	 to	 group	 by,	 and	 one	 or	 more	 columns	 which	 are	 suitable	 to
aggregate.

For	example,	the	following	table	satis�ies	that	condition:

A B C v  w 
---------- 
a f n 12 x 
a f o 10 y 
a f p 1  z 
a f q 90 w 
a g n 73 x 
a g o 90 y 
… 

A ,	 B ,	and	 C 	are	suitable	to	group	by,	and	 v 	and	 w 	are	suitable	to	aggregate.	But	it	is	worthwhile
emphasising	that	this	distinction	is	entirely	arbitrary,	and	that	nothing	in	the	algorithm	requires	that
columns	of	either	type	have	any	special	properties.	It	would	be	silly	to	group	on	a	column	most	of
whose	values	are	different,	but	the	algorithm	doesn’t	preclude	that.	And	in	this	example,	although	 w
is	a	column	of	symbols,	it	can	be	aggregated	as	long	as	its	rollup	function	satis�ies	the	condition	that
it	takes	list	input	and	returns	an	atom.

Let’s	 look	 at	 one	possible	 treetable	 based	 on	 T .	The	 grouping	 columns	 are	 A ,	 B ,	 and	 C .	 Order
matters.	 T 	grouped	by	 A B C 	 is	different	from	 T 	grouped	by	 B A C .	The	rollup	columns	are	 v
and	 w ,	and	the	rollup	functions	for	those	columns	are	 sum ,	 nul 	(explained	below),	and	 count .

A	 single	 column	may	be	 aggregated	more	 than	once.	 In	 the	 example	below,	we	 aggregate	 v 	 with
sum 	and	 count .

A	treetable	based	on	that	scheme	is	 R1 :

n_        | A B C counts v     w 
----------| -------------------- 
`symbol$()|       1000   52015   
,`a       | a     224    12054   
,`b       | b     200    11173   
,`c       | c     192    10290   
,`d       | d     192    8136    
,`e       | e     192    10362   

Here	we	can	see	that	 R1 	is	a	keytable.	The	key	of	 R1 	is	the	column	 n_ ,	a	path-list.	The	�irst	record
of	 R1 	 is	 the	 grand-total	 of	 T .	We	 can	 see	 that	 T 	 has	 1000	 records	 and	 that	 column	 v 	 sums	 to
52015.	The	aggregations	of	column	 w 	are	null.

We	can	also	see	by	examining	the	remaining	records	that	 R1 	contains	a	single	level	of	aggregation
based	on	distinct	values	of	column	 A .

We	can	also	see	nulls	in	 R1 :	the	 A 	column	of	the	�irst	record,	and	all	of	column	 w .	In	the	examples
used	in	this	paper,	null	means	cannot	aggregate	this	group.

Now	let’s	drill	down	on	the	record	where	 A=`a ,	giving	us	the	table	 R2 :



n_        | A B C counts v     w 
----------| -------------------- 
`symbol$()|       1000   52015   
,`a       | a     224    12054   
`a`f      | a f   28     791     
`a`g      | a g   28     2072    
`a`h      | a h   28     2058    
`a`i      | a i   28     1967    
`a`j      | a j   28     1078    
`a`k      | a k   28     1645    
`a`l      | a l   28     1484    
`a`m      | a m   28     959     
,`b       | b     200    11173   
,`c       | c     192    10290   
,`d       | d     192    8136    
,`e       | e     192    10362   

One	way	 to	 think	about	 treetables	 like	 R1 	 and	 R2 	 is	 that	 they	are	 constructed	out	of	 sub-tables.
These	‘blocks’	are	computed	independently	from	 T ,	then	stitched	together	in	the	right	order.	This	is
the	pattern	followed	by	the	algorithm	described	below.

Let’s	begin	by	identifying	the	parameters.

The	�irst	parameter	is	 T ,	the	underlying	table	of	unaggregated	records.

The	second	parameter	is	a	list	of	the	grouping	columns:

q)G:`A`B`C 

The	third	parameter	is	a	dictionary	of	rollup	functions:

q)A:`counts`v`w!((sum;`n);(sum;`v);(nul;`w)) 
q)A 
counts| count                                 `v 
v     | sum                                   `v 
w     | {first$[1=count distinct x,();x;0#x]} `w 

The	key	of	 A 	is	a	list	of	names	of	the	aggregated	columns	in	the	treetable.	The	value	of	 A 	is	a	list	of
pairs	of	the	form	 (f;c) ,	where	 f 	is	an	aggregator	and	 c 	is	a	column	in	 T .

count 	 and	 sum 	 are	 primitive	 aggregators	 of	 q:	 sum 	 is	 +/ 	 and	 count 	 returns	 the	 number	 of
elements	 in	 a	 list.	 nul 	 serves	 as	 our	 general	 default	 aggregator:	 given	 a	 list	 x ,	 return	 the	 �irst
element	of	 x 	if	 x 	is	all	duplicates,	else	return	the	null	of	 x .	Nulls	in	treetables	are	always	the	result
of	aggregation	by	 nul .

The	fourth	and	�inal	parameter	is	a	package	of	information	which	represents	the	"drill-down	state"
of	the	treetable	to	be	computed.	For	R1,	this	state	is	the	keytable	P1:

n                      | v 
-----------------------| - 
(`symbol$())!`symbol$()| 1 

and	for	 R2 	it	is	the	keytable	 P2 :

n                      | v 
-----------------------| - 
(`symbol$())!`symbol$()| 1 
(,`A)!,`a              | 1 

The	 state	 is	 a	 keytable	 where	 the	 key	 n 	 is	 a	 list	 of	 dictionaries,	 each	 of	 which	 functions	 as	 an
instruction	to	the	algorithm	to	compute	a	speci�ic	sub-table	block	of	the	treetable.	The	meaning	of	 v
is	described	below	in	the	section	on	state.

For	example,	the	grand-total	block	is	arbitrarily	represented	by	the	unique	empty	dictionary:

(`symbol$())!`symbol$() 

whose	key	and	value	both	consist	of	the	empty	symbol	list.	This	dictionary	will	be	interpreted	as	the
instruction	to	select	all	records	from	the	underlying	table	 T 	and	aggregate	them	by	distinct	values
of	the	�irst	element	of	 G ,	which	in	this	example	is	 `A .

The	 R2 	block	of	aggregated	 A=`a 	values	consists	of	the	dictionary:

A| a 



This	will	 be	 interpreted	 as	 the	 instruction	 to	 select	 records	 from	 T 	 where	 A=`a 	 and	 aggregate
them	by	distinct	values	of	the	second	element	 G ,	which	in	this	example	is	 `B .

Finally,	let’s	look	at	a	treetable	 R4 	which	has	been	drilled	down	to	the	leaves	along	one	of	the	paths:

n_        | A B C counts v      w 
----------| --------------------- 
`symbol$()|       1000   479131   
,`a       | a     224    106670   
`a`f      | a f   28     13952    
`a`f`n    | a f n 7      2867   x 
`a`f`n`0  | a f n 908    908    x 
`a`f`n`1  | a f n 256    256    x 
`a`f`n`2  | a f n 401    401    x 
`a`f`n`3  | a f n 288    288    x 
`a`f`n`4  | a f n 543    543    x 
`a`f`n`5  | a f n 258    258    x 
`a`f`n`6  | a f n 213    213    x 
`a`f`o    | a f o 7      3707   y 
`a`f`p    | a f p 7      3640   z 
`a`f`q    | a f q 7      3738   w 
`a`g      | a g   28     14948    
`a`h      | a h   28     12190    
`a`i      | a i   28     13535    
`a`j      | a j   28     13835    
`a`k      | a k   28     12945    
`a`l      | a l   28     13643    
… 

We	append	a	unique	identi�ier	to	the	key	of	each	leaf.	This	preserves	 n_ 	as	a	valid	key.

The	instruction	table	for	 R4 	is	 P4 :

n                      | v 
-----------------------| - 
(`symbol$())!`symbol$()| 1 
(,`A)!,`a              | 1 
`A`B!`a`f              | 1 
`A`B`C!`a`f`n          | 1 

R4 	has	the	following	blocks	as	constituents:

the	grand-total	block	(root)
the	 A=`a 	block
the	 A=`a, B=`f 	block
the	 A=`a, B=`f, C=`n 	block	(leaves)

Concentrating	just	on	the	value	parts	of	the	blocks,	let's	see	how	we	would	generate	those	using	the
native	query	language	of	q.

To	compute	the	grand-total	block:

q)flip enlist each exec nul A,nul B,nul C,count v,sum v,nul w from T 
A B C v    v1     w 
------------------- 
   1000 479131   

To	compute	the	�irst	subtotal	level:

q)0!select nul B,nul C,counts:count v,sum v,nul w by A from T 
A B C counts v      w 
--------------------- 
a     224    106670   
b     200    100048   
c     192    90541    
d     192    92853    
e     192    89019  

To	compute	the	 A=`a 	block:



q)0!select nul C,counts:count v,sum v,nul w by A,B from T where A=`a 
A B C counts v     w 
-------------------- 
a f   28     13952   
a g   28     14948   
a h   28     12190   
a i   28     13535   
a j   28     13835   
a k   28     12945   
a l   28     13643   
a m   28     11622  

To	compute	the	 A=`a, B=`f 	block:

q)0!select counts:count v,sum v,nul w by A,B,C from T where A=`a,B=`f 
A B C counts v    w 
------------------- 
a f n 7      2867 x 
a f o 7      3707 y 
a f p 7      3640 z 
a f q 7      3738 w 

And	�inally,	to	compute	the	block	containing	the	leaves:

q)0!select A,B,C,counts:1,v,w from T where A=`a,B=`f,C=`n 
A B C counts v   w 
------------------ 
a f n 1      908 x 
a f n 1      256 x 
a f n 1      401 x 
a f n 1      288 x 
a f n 1      543 x 
a f n 1      258 x 
a f n 1      213 x 

4.	Construction
Now	we	know	what	a	 treetable	 is,	and	have	an	 intuitive	grasp	of	what	 its	parts	are,	how	they	are
related,	and	how	those	parts	are	computed.	The	next	step	is	to	explain	the	q	code	which	implements
those	 ideas.	 My	 advice	 is	 that	 the	 reader	 get	 a	 q	 session,	 load	 the	 associated	 script[1],	 and
experiment	by	reading	along	and	executing	(and	varying!)	bits	of	code.	All	the	examples	used	in	this
paper	are	de�ined	in	that	script.

Rather	 than	write	 a	 line-by-line	 commentary	 on	 the	 implementation,	 I’ve	 chosen	 to	 focus	 on	 the
concepts	which	drive	that	implementation,	and	on	a	few	of	the	knottier	parts	of	the	code.

An	indispensable	companion	in	this	(the	reader’s)	task	is	Jeffry	Borror’s	splendid	book,	q	for	Mortals.
There	are	a	few	‘dangerous	curves’	ahead.	In	particular,	I	recommend	close	study	of	the	chapter	in
Jeffrey’s	book	on	Functional	Forms.

The	four	parameters	of	treetable	construction	are:

T the	underlying	table
G a	list	of	group	columns
P the	path	table
A the	rollup	dictionary

The	construction	function	takes	 T ,	 G ,	 P ,	and	 A 	and	returns	 R ,	the	treetable:

construct:{[t;g;p;a]1!`n_ xasc root[t;g;a]block[t;g;a]/visible p} 

construct 	uses	three	subfunctions:

visible determine	which	paths	are	visible
root construct	the	root	block
block construct	non-root	blocks

The	form	of	the	 construct 	function	is:

  .. r0 f/s 



r0 	 is	 the	 initial	 state	and	 s 	 is	 a	 list	 of	 arguments	 to	 the	dyadic	 function	 f .	Note	 that	 the	 block
function	 takes	 �ive	arguments,	but	 in	 this	context	 is	applied	as	a	dyad.	 In	q,	we	say	 that	 block 	 is
projected	 on	 its	 �irst	 three	 arguments	 t ,	 g ,	 and	 a .	 The	 �irst	 three	 arguments	 are	 �ixed	 and	 the
remaining	two	argument	positions	are	open.	So	 block[t;g;a] 	is	a	dyad.

Suppose	 s 	has	 n 	elements.	Then:

r1:f[r0;s 0] 
r2:f[r1;s 1] 
: 
rn:f[rn-1;s n-1] 

In	this	case,	 r0 	 is	 the	root	block	of	 the	treetable	and	 s 	 is	 the	result	of	applying	 visible 	 to	 the
path	table	 p .	For	now,	all	we	need	to	know	is	that	this	result	is	a	list	of	instructions,	for	example:

(`symbol$())!`symbol$() 
(,`A)!,`a 
`A`B!`a`f 

So	in	this	example,	the	block	function	 f 	will	be	applied	three	times:	�irst	to	the	root	block	and	the
�irst	instruction;	then	to	the	result	of	that	application	and	the	second	instruction;	and	�inally	to	the
result	of	that	application	and	the	third	instruction.

The	result	is	a	table	with	the	structure:

root block 
A=`a block 
A=`a, B=`f block 

The	 construct 	function	then	up-sorts	the	result	by	 n_ 	and	makes	it	the	key:

1!`n_ xasc .. 

This	 is	 necessary	 because	 the	 blocks	 have	 to	 be	 recursively	 interleaved.	 For	 example,	 the
A=`a, B=`f 	block	must	appear	 in	 the	 treetable	 immediately	after	 the	 record	 in	 the	 A=`a 	block
where	 B=`f :

n_        | A B C counts v      w 
----------| --------------------- 
`symbol$()|       1000   479131   
,`a       | a     224    106670   
`a`f      | a f   28     13952  
`a`f`n    | a f n 7      2867   x 
`a`f`o    | a f o 7      3707   y 
`a`f`p    | a f p 7      3640   z 
`a`f`q    | a f q 7      3738   w 
`a`g      | a g   28     14948    
`a`h      | a h   28     12190    
… 

Sorting	on	 n_ 	is	a	fast	non-recursive	method	for	interleaving	records	from	the	different	blocks.

construct 	 uses	 over 	 to	 produce	 a	 single	 table,	 where	 successive	 blocks	 are	 appended	 to	 the
initial	root	table.	This	method	destroys	structural	 information	about	the	blocks.	That	 is,	we	have	a
single	table	as	the	result	rather	than	a	list	of	blocks.

There	 is	 an	 alternative	 method	 which	 constructs	 the	 blocks	 in	 parallel	 using	 peach 	 instead	 of
over .	Assume	q	is	started	with	slaves	(e.g.	 q -s 4 ).	Then:

pconstruct:{[t;g;p;a]1!̀ n_ xasc root[t;g;a],raze pblock[t;g;a]peach visible p} 
 
pblock:{[t;g;a;p] 
 f:$[g~key p;leaf;node g(̀ ,g)?last key p]; 
 (̀ n_,g)xcols f[t;g;a;p]} 

We’ll	 now	 look	more	 closely	 at	 the	 root	 and	 block	 functions.	 The	 visible	 function	 is	 discussed	 in
section	5	below.	A	few	auxiliary	functions	mentioned	in	the	text	are	not	discussed.

The	root	function	is:

root:{[t;g;a] 
 a[g]:nul,'g; 
 (`n_,g)xcols node_[g]flip enlist each?[t;();();a]} 

Recall	from	the	previous	section	that	the	root	block	is	computed	with	the	expression:



flip enlist each exec nul A, nul B, nul C, counts:count v, sum v, nul w from T 

We	can	use	q’s	native	parsing	primitive	to	see	the	underlying	functional	form	of	the	query	part	of	this
expression:

q)parse "exec nul A, nul B, nul C, counts:count v, sum v, nul w from T" 
? 
T̀ 
() 
() 
À̀ B̀ C̀ counts̀ v̀ w!((̀ nul;̀ A);(̀ nul;̀ B);(̀ nul;̀ C);(#:;̀ v);(sum;̀ v);(̀ nul;̀ w)) 

The	functional	form	of	exec	is:

?[t;();();a] 

where	a	 is	 the	rollup	dictionary	constructed	 in	 the	 �irst	 two	 lines	of	 the	root	 function.	 In	 the	case
where	every	element	of	 a 	is	a	rollup,	this	expression	returns	a	dictionary	of	atoms.	To	get	our	one-
record	 table,	 we	 therefore	 enlist	 each	 atom	 and	 �lip	 the	 result.	 This	 table	 is	 now	 passed	 to	 the
node_ 	function,	which	adds	the	 n_ 	column	which	will	become	the	key	of	our	root	block.	The	result
is	reordered	to	put	 n_ 	and	the	grouping	columns	at	the	front.

The	 block 	 function	 doesn’t	 do	 much:	 it	 calls	 the	 leaf 	 function	 if	 the	 key	 of	 the	 instruction
contains	 all	 the	 grouping	 columns,	 else	 it	 calls	 the	 node 	 function	 with	 by-clause	 b 	 =	 the	 next
grouping	column:

block:{[t;g;a;r;p] 
 f:$[g~key p;leaf;node g(`,g)?last key p]; 
 r,(`n_,g)xcols f[t;g;a;p]} 

As	the	�inal	step,	it	pushes	the	key	and	the	grouping	columns	out	to	the	front	of	the	query	result	and
appends	this	to	the	treetable	 r 	computed	to	this	point.

The	node	function	is:

node:{[b;t;g;a;p] 
 c:constraint p; 
 a[h]:first,'h:(i:g?b)#g; 
 a[h]:nul,'h:(1+i)_g; 
 node_[g]0!?[t;c;enlist[b]!enlist b;a]} 

Recall	again	from	the	previous	section	how	we	compute	a	block	which	is	neither	a	leaf	nor	a	root:

select nul C, counts:count v, sum v, nul w by A,B from T where A=`a 

The	functional	form	of	this	query	is:

? 
`T 
,,(=;`A;,`a) 
`A`B!`A`B 
`C`counts`v`w!((`nul;`C);(#:;`v);(sum;`v);(`nul;`w)) 

In	an	expression	of	the	form:

?[t;c;b;a] 

c 	 is	 the	constraint,	or	 ‘where’	 clause	 (where	 A=`a ),	 b 	 is	 the	 grouping,	 or	 ‘by’	 clause	 (by	 A,B ),
and	 a 	is	the	rollup	dictionary.

The	�irst	line	of	the	function	constructs	the	‘where’	clause	 c 	from	the	instruction	 p :

constraint:{[p]flip(=;key p;flip enlist value p)} 

For	example,

q)p 
A | a 
B | f 
C | n 
 
q)constraint p 
= `A ,`a 
= `B ,`f 
= `C ,`n 

The	next	two	lines	construct	the	‘by’	clause	from	 A 	and	the	group	column	vector	 g .



In	 the	 last	 line,	 the	 constructed	 query	 is	 evaluated,	 de-keyed,	 and	 passed	 through	 the	 node_
function,	 which	 adds	 the	 n_ 	 column	 to	 the	 table.	 The	 columns	 are	 re-ordered	 in	 the	 block
function,	which	calls	 leaf 	and	 node .

The	leaf	function	has	a	similar	form:

leaf:{[t;g;a;p] 
 c:constraint p; 
 a:last each a; 
 a[g]:g; 
 leaf_[g]0!?[t;c;0b;a]} 

Again,	the	�irst	three	lines	construct	the	arguments	to	the	functional	form	of	the	leaf	query,	and	the
resulting	table	is	de-keyed	and	passed	through	the	leaf_	function,	which	adds	the	n_	column	to	the
result.

5.	State
The	treetable	is	intended	for	interactive	use	as	the	data-structure	backing	a	GUI	control.	The	user	of
the	control	clicks	on	a	record	to	open	or	close	that	record.	Opening	a	record	 r 	in	the	control	reveals
the	records	which	are	children	of	 r .	Closing	 r 	conceals	the	children	of	 r .

If	a	child	 c 	 of	 r 	 is	 open,	 and	 then	 r 	 is	 closed	and	 re-opened,	 then	 c ’s	 state	must	 be	 restored.
Therefore	we	must	keep	track	of	the	state	of	the	treetable.	We	do	this	by	associating	the	instruction
for	a	block	with	a	boolean	value.	The	value	is	 1b 	 if	the	parent	of	the	block	is	open,	else	 0b 	 if	it	is
closed.

The	state	of	a	 treetable	 is	contained	 in	the	path	table	 P .	For	example,	here	 is	 the	state	 P4 	 of	 the
table	 R4 :

n                      | v 
-----------------------| - 
(`symbol$())!`symbol$()| 1 
(,`A)!,`a              | 1 
`A`B!`a`f              | 1 
`A`B`C!`a`f`n          | 1 

The	visible	 function	 takes	 a	path	 table	 and	 returns	only	 those	 instructions	which	 compute	blocks
which	lie	along	visible	paths:

q)visible P4 
(`symbol$())!`symbol$() 
(,`A)!,`a 
`A`B!`a`f 
`A`B`C!`a`f`n 

Let’s	simulate	closing	 R4 	at	 A=`a .	The	result	 R5 	should	match	 R1 ,	the	initial,	minimal	treetable:

q)P5:closeat[P4;G;`a] 
q)P5 
n                      | v 
-----------------------| - 
(`symbol$())!`symbol$()| 1 
(,`A)!,`a              | 0 <- closed at A=`a 
`A`B!`a`f              | 1 
`A`B`C!`a`f`n          | 1 
 
q)visible P5 
(`symbol$())!`symbol$() 
 
q)R5:construct[T;G;P5;A] 
q)R5~R1 
1b 

Now	we'll	reopen	R5	at	A=`a.	P6	should	match	P4	and	the	resulting	treetable	R6	should	match	R4:

q)P6:openat[P5;G;`a] 
q)P6~P4 
1b 
q)R6:construct[T;G;P6;A] 
q)R6~R4 
1b 

openat 	and	 closeat 	are	projections	of	the	underlying	function	 at :



at:{[b;p;g;n]p,([n:enlist(count[n]#g)!n,()]v:enlist b)} 
 
openat:at 1b 
closeat:at 0b 

at 	relies	on	the	fact	that	catenation	to	a	dictionary	is	upsert:	append	if	the	key	is	new,	else	update.
For	example:

q)d:`a`b`c!10 20 30 
q)d,`c`d!40 50 
a| 10 
b| 20 
c| 40 
d| 50 

at 	is	trivial:	�lip	the	visibility	bit	for	an	instruction	in	the	path	table.	The	heavy	lifting	is	performed
by	the	 visible 	function:

visible:{[p] 
 q:parent exec n from p; 
 k:(reverse q scan)each til count q; 
 n where all each(exec v from p)k} 

The	�irst	line	computes	the	parent-vector	 q 	from	the	key	of	the	path	table	 p 	(see	section	2	above).
Line	2	computes	the	list	of	paths	from	the	root	to	all	nodes.	Line	3	performs	a	running	logical-and
scan	(q	keyword:	 all 	down	the	boolean	states	of	each	path.

Here	is	a	transcript	of	the	console	for	an	example	run:

q)P5 
n                      | v 
-----------------------| - 
(`symbol$())!`symbol$()| 1 
(,`A)!,`a              | 0 
`A`B!`a`f              | 1 
`A`B`C!`a`f`n          | 1 
 
q)p:P5 
 
q)q:parent exec n from p 
q)q 
0 0 1 2 

q)k:(reverse q scan)each til count q 
q)k 
,0 
0 1 
0 1 2 
0 1 2 3 

q)exec v from p 
1011b 
 
q)(exec v from p)k 
,1b 
10b 
101b 
1011b 

q)all each(exec v from p)k 
1000b 
 
q)where all each(exec v from p)k 
,0 
 
q)n where all each(exec v from p)k 
(`symbol$())!`symbol$() 

There	are	good	reasons	for	breaking	out	the	state	in	this	way.



In	our	example,	the	underlying	table	 T 	has	1000	records,	and	the	treetable	in	its	fully	opened	state,
in	which	 all	 leaves	 of	 T 	 and	 all	 aggregations	 are	 constructed,	 has	 1206	 records.	 The	 state-table
therefore	has	206	 instructions,	 each	of	which	corresponds	 to	a	 complete	 scan	of	 T .	(See	 Q2 	 and
S2 	in	[1].)	Clearly,	this	can	get	expensive.	For	example,	where	the	underlying	table	contains	millions
of	records	and	hundreds	of	aggregated	columns,	and	the	tree-structure	is	deep	and	bushy.	Moreover,
we	 cannot	 rule	 out	 the	 possibility	 that	 the	 underlying	 table	 is	 the	 target	 of	 frequent	 updates;	 for
example,	if	it	is	connected	to	a	real-time	data-source.	In	that	case,	we	cannot	even	be	con�ident	that
the	structure	of	the	tree	won’t	change.	(See	the	 valid 	function	in	[1].)

For	these	reasons,	the	design	is	deliberately	lazy:	we	compute	only	as	much	of	the	tree	as	the	path-
table	directs.

6.	Sort
The	 APL	 sorting	 primitives	 grade-up	 and	 grade-down	 appear	 in	 q	 as	 the	 keywords	 iasc 	 and
idesc .

We	can	use	 over 	to	do	multi-column	sorts:

msort:{x y z x} 

msort 	 is	a	function	of	three	arguments:	 x ,	an	index	vector;	 y ,	a	permutation	function;	and	 z ,	 a
list.	Thus:	 x 	permuted	by	the	result	of	applying	 y 	to	 z 	permuted	by	 x .

Let	 v 	be	a	list	of	two	vectors:

q)v 
0 2 4 4 3 0 4 3 0 3 
0 3 1 4 1 3 1 3 1 2 

Sort	 v 0 	descending	within	 v 1 	ascending:

q)i:msort/[til count first v;(idesc;iasc);v] 
q)i 
0 2 6 4 8 9 7 1 5 3 
 
q)v@\:i 
0 4 4 3 0 3 3 2 0 4 
0 1 1 1 1 2 3 3 3 4 

msort/ 	repeatedly	permutes	 x 	by	the	result	of	applying	 y 	to	 z 	permuted	by	 x .

msort 	can	be	used	to	sort	dictionaries	of	vectors:

q)d:`a`b!v 
q)d 
a| 0 2 4 4 3 0 4 3 0 3 
b| 0 3 1 4 1 3 1 3 1 2 
 
q)d@\:msort/[til count first d;(idesc;iasc);d] 
a| 0 4 4 3 0 3 3 2 0 4 
b| 0 1 1 1 1 2 3 3 3 4 

and	tables:

q)t:flip d 
q)t 
a b 
--- 
0 0 
2 3 
4 1 
4 4 
3 1 
0 3 
4 1 
3 3 
0 1 
3 2 



q)t msort/[til count t;(idesc;iasc);flip t] 
a b 
--- 
0 0 
4 1 
4 1 
3 1 
0 1 
3 2 
3 3 
2 3 
0 3 
4 4 

Our	 problem	 is	 to	 adapt	 msort 	 to	 apply	 recursively	 to	 the	 hierarchically-related	 blocks	 of	 a
treetable.

In	our	example,	 R4 	has	25	records	and	blocks	at	four	levels:

n_        | A B C counts v      w 
----------| --------------------- 
`symbol$()|       1000   479131   
,`a       | a     224    106670   
`a`f      | a f   28     13952    
`a`f`n    | a f n 7      2867   x 
`a`f`n`0  | a f n 908    908    x 
`a`f`n`1  | a f n 256    256    x 
`a`f`n`2  | a f n 401    401    x 
`a`f`n`3  | a f n 288    288    x 
`a`f`n`4  | a f n 543    543    x 
`a`f`n`5  | a f n 258    258    x 
`a`f`n`6  | a f n 213    213    x 
`a`f`o    | a f o 7      3707   y 
`a`f`p    | a f p 7      3640   z 
`a`f`q    | a f q 7      3738   w 
`a`g      | a g   28     14948    
`a`h      | a h   28     12190    
`a`i      | a i   28     13535    
`a`j      | a j   28     13835    
`a`k      | a k   28     12945    
`a`l      | a l   28     13643    
`a`m      | a m   28     11622    
,`b       | b     200    100048   
,`c       | c     192    90541    
,`d       | d     192    92853    
,`e       | e     192    89019    

R4 	is	implicitly	hierarchical.	The	typical	approach	to	operating	on	such	structures	is	to	apply	a	‘�lat’
algorithm	like	 msort 	recursively.	The	deprecated	function	 rsort 	in	[1]	exempli�ies	this	approach.

But	 there	 is	 a	 better	way.	We	want	 an	 ‘array	 solution’	where	 the	 iteration	 is	 handled	 covertly	 by
primitives.	 And	 we	 have	 one.	 Our	 solution	 will	 (i)	 convert	 the	 parent-vector	 into	 a	 list	 of	 child-
vectors;	(ii)	use	the	child-list	to	partition	the	treetable	into	child-blocks;	(iii)	sort	each	child-block;
(iv)	use	the	key	of	the	treetable	to	reassemble	the	sorted	blocks	into	a	treetable.

Let’s	step	through	it	using	 R4 .

First,	de-key	 R4 :

q)t:0!R4 

Next,	compute	the	parent-vector	of	 t 	from	column	 n_ ,	the	path-list:

q)parent:{[n]n?-1_'n} 
 
q)n:exec n_ from t 
q)p:parent n 
q)p 
0 0 1 2 3 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 1 0 0 0 0 

Next,	compute	the	child-list	from	 p :



q)children:{[p]@[(2+max p)#enlist();first[p],1+1_p;,;til count p]} 
 
q)i:children p 
q)i 
,0 
1 21 22 23 24 
2 14 15 16 17 18 19 20 
3 11 12 13 
4 5 6 7 8 9 10 

i 	is	a	list	of	indices	into	 t 	such	that	 t i 	is	a	list	of	the	subtable	blocks	of	 t :

q)t i 
+̀ n_̀ À B̀ C̀ counts̀ v̀ w!(,̀ symbol$();,̀ ;,̀ ;,̀ ;,1000;,479131;,̀ ) 
+̀ n_̀ À B̀ C̀ counts̀ v̀ w!((,̀ a;,̀ b;,̀ c;,̀ d;,̀ e);̀ à b̀ c̀ d̀ e;̀ `̀ `̀ ;̀ `̀ `̀ ;224 200 1.. 
+̀ n_̀ À B̀ C̀ counts̀ v̀ w!((̀ à f;̀ à g;̀ à h;̀ à i;̀ à j;̀ à k;̀ à l;̀ à m);̀ à à à à à a.. 
+̀ n_̀ À B̀ C̀ counts̀ v̀ w!((̀ à f̀ n;̀ à f̀ o;̀ à f̀ p;̀ à f̀ q);̀ à à à a;̀ f̀ f̀ f̀ f;̀ ǹ ò p.. 
+̀ n_̀ À B̀ C̀ counts̀ v̀ w!((̀ à f̀ ǹ 0;̀ à f̀ ǹ 1;̀ à f̀ ǹ 2;̀ à f̀ ǹ 3;̀ à f̀ ǹ 4;̀ à f̀ ǹ 5.. 

For	example,	block	1	is:

q)t i 1 
n_ A B C counts v      w 
------------------------ 
a  a     224    106670   
b  b     200    100048   
c  c     192    90541    
d  d     192    92853    
e  e     192    89019    

Suppose	we	have	a	single	sorting	operation	 o 	and	a	single	column	 c :

q)c:enlist`v 
q)o:enlist iasc 

Sort	each	block:

q)j:msort[t;c;o]each i 
q)j 
,0 
24 22 23 21 1 
20 15 18 16 19 17 2 14 
3 12 11 13 
10 5 9 7 6 8 4 

We	now	have	the	permutations	we	need	to	sort	each	block	of	 t :

q)t j 1 
n_ A B C counts v      w 
------------------------ 
e  e     192    89019    
c  c     192    90541    
d  d     192    92853    
b  b     200    100048   
a  a     224    106670   

Our	adaptation	of	 msort 	for	treetables	is:

msort:{[t;c;o;i]i{x y z x}/[til count i;o;flip[t i]c]} 

As	the	last	step,	we	need	to	mesh	the	permutations	to	give	us	the	single	permutation	vector	 v 	/such
that	 t v 	is	 t 	in	sorted	order.

To	do	that,	we	�irst	compute	the	reordered	keys	of	the	blocks:

q)m:n j 
q)m 
,`symbol$() 
(,`e;,`c;,`d;,`b;,`a) 
(`a`m;`a`h;`a`k;`a`i;`a`l;`a`j;`a`f;`a`g) 
(`a`f`n;`a`f`p;`a`f`o;`a`f`q) 
(`a`f`n`6;`a`f`n`1;`a`f`n`5;`a`f`n`3;`a`f`n`2;`a`f`n`4;`a`f`n`0) 

Then,	to	mesh	the	keys	we	insert	each	path-list	into	the	appropriate	slot	of	the	mesh	of	the	previous
path-lists.	This	is	our	function	 pmesh :

pmesh:{i:1+x?-1_first y;(i#x),y,i _ x;()} 

We	apply	it	over	 m 	to	give	us	the	permuted	path-list	of	the	sorted	table:



q)k:pmesh over m 
q)k 
`symbol$() 
,`e 
,`c 
,`d 
,`b 
,`a 
`a`m 
`a`h 
`a`k 
`a`i 
`a`l 
`a`j 
`a`f 
`a`f`n 
`a`f`n`6 
`a`f`n`1 
`a`f`n`5 
`a`f`n`3 
`a`f`n`2 
`a`f`n`4 
`a`f`n`0 
`a`f`p 
`a`f`o 
`a`f`q 
`a`g 

Finally,	we	look	up	 k 	in	 n ,	which	gives	us	the	index-vector	 v 	which	permutes	 n 	into	 k :

q)v:n?k 
q)v 
0 24 22 23 21 1 20 15 18 16 19 17 2 3 10 5 9 7 6 8 4 12 11 13 14 

and	hence	 t 	into	 t 	upsorted	by	 v :

q)t v 
n_         A B C counts v      w 
-------------------------------- 
`symbol$()       1000   479131   
,`e        e     192    89019    
,`c        c     192    90541    
,`d        d     192    92853    
,`b        b     200    100048   
,`a        a     224    106670   
`a`m       a m   28     11622    
`a`h       a h   28     12190    
`a`k       a k   28     12945    
`a`i       a i   28     13535    
`a`l       a l   28     13643    
`a`j       a j   28     13835    
`a`f       a f   28     13952    
`a`f`n     a f n 7      2867   x 
`a`f`n`6   a f n 213    213    x 
`a`f`n`1   a f n 256    256    x 
`a`f`n`5   a f n 258    258    x 
`a`f`n`3   a f n 288    288    x 
`a`f`n`2   a f n 401    401    x 
`a`f`n`4   a f n 543    543    x 
`a`f`n`0   a f n 908    908    x 
`a`f`p     a f p 7      3640   z 
`a`f`o     a f o 7      3707   y 
`a`f`q     a f q 7      3738   w 
`a`g       a g   28     14948    

Assembling	the	steps:

 tsort:{[t;c;o] 
  n:exec n_ from t; 
  i:children[parent n]except enlist(); 
  j:msort[0!t;c;o]i; 
  n?pmesh over n j} 

7.	Conclusion
q	 is	 a	 language	 of	 lists	 and	 dictionaries.	 By	 adding	 tables	 (lists	 of	 dictionaries)	 and	 keytables
(dictionaries	of	 tables),	 q	 inverts	 the	 traditional	 relationship	between	database	 and	programming
language.



In	the	familiar	model,	 tables	 live	 in	a	database.	Programs	extract	data	 from	tables	 in	 the	database,
and	insert	data	into	them.	Other	programs,	usually	written	in	some	special	database-y	language,	can
be	 attached	 to	 database	 tables	 as	 ‘triggers’	 If	 you’re	 used	 to	 this	 sort	 of	 thing	 it	 doesn’t	 seem	 so
onerous.	If	you’re	not,	it	feels	like	sorting	rice-grains	while	wearing	mittens.

In	 q,	 tables	 and	 keytables	 are	 �irst-class	 entities	 whose	 parts	 are	 �irst-class.	 You	 assign	 them,
transform	them,	bust	them	apart,	stick	them	in	lists,	and	pass	them	into	and	out	of	functions,	just	the
way	you	do	with	lists	and	dictionaries.	And	that’s	because	they	are	lists	and	dictionaries.

In	most	applications,	the	built-in	SQL-like	syntax	of	q	is	perfectly	adequate:

select/exec/update/delete … by … from … where … 

But	as	the	treetable	example	shows,	it	may	be	necessary	to	drop	down	to	the	functional	level	where
the	SQL	keywords	give	way	to	the	primitives	 ? 	and	 ! 	and	the	content	of	the	queries	is	carried	as	q-
object	arguments	to	those	primitives.
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